Homepaਕਿਰਿਆਸ਼ੀਲਤਾ ਊਰਜਾ (Ea)

ਕਿਰਿਆਸ਼ੀਲਤਾ ਊਰਜਾ (Ea)

ਰਸਾਇਣ ਵਿਗਿਆਨ ਵਿੱਚ, ਪਰਮਾਣੂਆਂ ਜਾਂ ਅਣੂਆਂ ਨੂੰ ਇੱਕ ਅਜਿਹੀ ਸਥਿਤੀ ਵਿੱਚ ਸਰਗਰਮ ਕਰਨ ਲਈ ਲੋੜੀਂਦੀ ਊਰਜਾ ਦੀ ਘੱਟੋ-ਘੱਟ ਮਾਤਰਾ ਜਿਸ ਵਿੱਚ ਇੱਕ ਰਸਾਇਣਕ ਤਬਦੀਲੀ ਜਾਂ ਭੌਤਿਕ ਆਵਾਜਾਈ ਪੈਦਾ ਕੀਤੀ ਜਾ ਸਕਦੀ ਹੈ , ਨੂੰ ਕਿਰਿਆਸ਼ੀਲਤਾ ਊਰਜਾ , Ea ਕਿਹਾ ਜਾਂਦਾ ਹੈ। ਪਰਿਵਰਤਨ ਅਵਸਥਾ ਦੇ ਸਿਧਾਂਤ ਵਿੱਚ, ਕਿਰਿਆਸ਼ੀਲਤਾ ਊਰਜਾ ਇੱਕ ਕਿਰਿਆਸ਼ੀਲ ਜਾਂ ਪਰਿਵਰਤਨ ਅਵਸਥਾ ਸੰਰਚਨਾ ਵਿੱਚ ਪਰਮਾਣੂਆਂ ਜਾਂ ਅਣੂਆਂ ਅਤੇ ਇੱਕ ਸ਼ੁਰੂਆਤੀ ਸੰਰਚਨਾ ਵਿੱਚ ਪਰਮਾਣੂਆਂ ਜਾਂ ਅਣੂਆਂ ਵਿੱਚ ਊਰਜਾ ਸਮੱਗਰੀ ਵਿੱਚ ਅੰਤਰ ਹੈ। ਲਗਭਗ ਹਮੇਸ਼ਾਂ, ਪ੍ਰਤੀਕ੍ਰਿਆ ਦੀ ਸਥਿਤੀ ਪ੍ਰਤੀਕ੍ਰਿਆ ਕਰਨ ਵਾਲੇ ਉਤਪਾਦਾਂ (ਪ੍ਰਤਿਕਿਰਿਆ ਕਰਨ ਵਾਲੇ) ਨਾਲੋਂ ਉੱਚ ਊਰਜਾ ਪੱਧਰ ‘ਤੇ ਹੁੰਦੀ ਹੈ। ਇਸ ਲਈ, ਸਰਗਰਮੀ ਊਰਜਾ ਦਾ ਹਮੇਸ਼ਾ ਇੱਕ ਸਕਾਰਾਤਮਕ ਮੁੱਲ ਹੁੰਦਾ ਹੈ। ਇਹ ਸਕਾਰਾਤਮਕ ਮੁੱਲ ਇਸ ਗੱਲ ਦੀ ਪਰਵਾਹ ਕੀਤੇ ਬਿਨਾਂ ਵਾਪਰਦਾ ਹੈ ਕਿ ਕੀ ਪ੍ਰਤੀਕ੍ਰਿਆ ਊਰਜਾ ਨੂੰ ਜਜ਼ਬ ਕਰਦੀ ਹੈ ( ਐਂਡਰਗੋਨਿਕ ਜਾਂਐਂਡੋਥਰਮਿਕ ) ਜਾਂ ਇਸ ਨੂੰ ਪੈਦਾ ਕਰਦਾ ਹੈ ( ਐਕਸੋਰਗੋਨਿਕ ਜਾਂ ਐਕਸੋਥਰਮਿਕ )।

ਕਿਰਿਆਸ਼ੀਲਤਾ ਊਰਜਾ Ea ਲਈ ਸ਼ਾਰਟਹੈਂਡ ਹੈ । Ea ਯੂਨਿਟਾਂ ਦੀਆਂ ਸਭ ਤੋਂ ਆਮ ਇਕਾਈਆਂ ਕਿਲੋਜੂਲ ਪ੍ਰਤੀ ਮੋਲ (kJ/mol) ਅਤੇ ਕਿਲੋਕੈਲੋਰੀ ਪ੍ਰਤੀ ਮੋਲ (kcal/mol) ਹਨ।

ਅਰਹੇਨੀਅਸ ਈ ਏ ਸਮੀਕਰਨ

ਸਵਾਂਤੇ ਅਰਹੇਨੀਅਸ ਇੱਕ ਸਵੀਡਿਸ਼ ਵਿਗਿਆਨੀ ਸੀ ਜਿਸਨੇ 1889 ਵਿੱਚ ਸਰਗਰਮੀ ਊਰਜਾ ਦੀ ਹੋਂਦ ਦਾ ਪ੍ਰਦਰਸ਼ਨ ਕੀਤਾ, ਉਸ ਸਮੀਕਰਨ ਦਾ ਵਿਕਾਸ ਕੀਤਾ ਜੋ ਉਸਦੇ ਨਾਮ ਨੂੰ ਦਰਸਾਉਂਦਾ ਹੈ। ਐਰੇਨੀਅਸ ਸਮੀਕਰਨ ਤਾਪਮਾਨ ਅਤੇ ਪ੍ਰਤੀਕ੍ਰਿਆ ਦਰ ਦੇ ਵਿਚਕਾਰ ਸਬੰਧ ਨੂੰ ਦਰਸਾਉਂਦਾ ਹੈ। ਇਹ ਸਬੰਧ ਰਸਾਇਣਕ ਪ੍ਰਤੀਕ੍ਰਿਆਵਾਂ ਦੀ ਗਤੀ ਦੀ ਗਣਨਾ ਕਰਨ ਲਈ ਜ਼ਰੂਰੀ ਹੈ ਅਤੇ, ਸਭ ਤੋਂ ਵੱਧ, ਇਹਨਾਂ ਪ੍ਰਤੀਕ੍ਰਿਆਵਾਂ ਨੂੰ ਹੋਣ ਲਈ ਲੋੜੀਂਦੀ ਊਰਜਾ ਦੀ ਮਾਤਰਾ।

ਅਰਹੇਨੀਅਸ ਸਮੀਕਰਨ ਵਿੱਚ, K ਪ੍ਰਤੀਕ੍ਰਿਆ ਦਰ ਗੁਣਾਂਕ (ਪ੍ਰਤੀਕ੍ਰਿਆ ਦਰ) ਹੈ, A ਇਸ ਗੱਲ ਦਾ ਕਾਰਕ ਹੈ ਕਿ ਅਣੂ ਕਿੰਨੀ ਵਾਰ ਟਕਰਾਉਂਦੇ ਹਨ, ਅਤੇ e ਇੱਕ ਸਥਿਰ (ਲਗਭਗ 2.718 ਦੇ ਬਰਾਬਰ) ਹੈ। ਦੂਜੇ ਪਾਸੇ, Ea ਐਕਟੀਵੇਸ਼ਨ ਊਰਜਾ ਹੈ ਅਤੇ R ਯੂਨੀਵਰਸਲ ਗੈਸ ਸਥਿਰ (ਊਰਜਾ ਯੂਨਿਟ ਪ੍ਰਤੀ ਤਾਪਮਾਨ ਵਾਧੇ ਪ੍ਰਤੀ ਮੋਲ) ਹੈ। ਅੰਤ ਵਿੱਚ, ਟੀ ਪੂਰਨ ਤਾਪਮਾਨ ਨੂੰ ਦਰਸਾਉਂਦਾ ਹੈ, ਡਿਗਰੀ ਕੈਲਵਿਨ ਵਿੱਚ ਮਾਪਿਆ ਜਾਂਦਾ ਹੈ।

ਇਸ ਤਰ੍ਹਾਂ, ਅਰੇਨੀਅਸ ਸਮੀਕਰਨ ਨੂੰ k= Ae^(-Ea/RT) ਵਜੋਂ ਦਰਸਾਇਆ ਗਿਆ ਹੈ। ਹਾਲਾਂਕਿ, ਕਈ ਸਮੀਕਰਨਾਂ ਦੀ ਤਰ੍ਹਾਂ, ਇਸ ਨੂੰ ਵੱਖ-ਵੱਖ ਮੁੱਲਾਂ ਦੀ ਗਣਨਾ ਕਰਨ ਲਈ ਮੁੜ ਵਿਵਸਥਿਤ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ। ਹਾਲਾਂਕਿ, ਕਿਰਿਆਸ਼ੀਲਤਾ ਊਰਜਾ (Ea) ਦੀ ਗਣਨਾ ਕਰਨ ਲਈ A ਦੇ ਮੁੱਲ ਨੂੰ ਜਾਣਨਾ ਜ਼ਰੂਰੀ ਨਹੀਂ ਹੈ, ਕਿਉਂਕਿ ਇਹ ਤਾਪਮਾਨ ਦੇ ਇੱਕ ਫੰਕਸ਼ਨ ਦੇ ਰੂਪ ਵਿੱਚ ਪ੍ਰਤੀਕ੍ਰਿਆ ਦਰ ਗੁਣਾਂਕ ਦੀ ਪਰਿਵਰਤਨ ਤੋਂ ਨਿਰਧਾਰਤ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ।

Ea ਦੀ ਰਸਾਇਣਕ ਮਹੱਤਤਾ

ਸਾਰੇ ਅਣੂਆਂ ਵਿੱਚ ਥੋੜ੍ਹੀ ਜਿਹੀ ਊਰਜਾ ਹੁੰਦੀ ਹੈ, ਜੋ ਕਿ ਗਤੀ ਊਰਜਾ ਜਾਂ ਸੰਭਾਵੀ ਊਰਜਾ ਦੇ ਰੂਪ ਵਿੱਚ ਹੋ ਸਕਦੀ ਹੈ। ਜਦੋਂ ਅਣੂ ਆਪਸ ਵਿੱਚ ਟਕਰਾਉਂਦੇ ਹਨ, ਤਾਂ ਉਹਨਾਂ ਦੀ ਗਤੀ ਊਰਜਾ ਵਿਘਨ ਪਾ ਸਕਦੀ ਹੈ ਅਤੇ ਬਾਂਡਾਂ ਨੂੰ ਵੀ ਨਸ਼ਟ ਕਰ ਸਕਦੀ ਹੈ, ਜੋ ਕਿ ਉਦੋਂ ਹੁੰਦਾ ਹੈ ਜਦੋਂ ਰਸਾਇਣਕ ਪ੍ਰਤੀਕ੍ਰਿਆਵਾਂ ਹੁੰਦੀਆਂ ਹਨ।

ਜੇਕਰ ਅਣੂ ਹੌਲੀ-ਹੌਲੀ ਚਲਦੇ ਹਨ, ਯਾਨੀ ਥੋੜੀ ਗਤੀਸ਼ੀਲ ਊਰਜਾ ਨਾਲ, ਜਾਂ ਤਾਂ ਉਹ ਦੂਜੇ ਅਣੂਆਂ ਨਾਲ ਟਕਰਾਉਂਦੇ ਨਹੀਂ ਹਨ ਜਾਂ ਪ੍ਰਭਾਵ ਕਮਜ਼ੋਰ ਹੋਣ ਕਾਰਨ ਕੋਈ ਪ੍ਰਤੀਕਿਰਿਆ ਨਹੀਂ ਪੈਦਾ ਕਰਦੇ ਹਨ। ਅਜਿਹਾ ਹੀ ਹੁੰਦਾ ਹੈ ਜੇਕਰ ਅਣੂ ਗਲਤ ਜਾਂ ਗਲਤ ਦਿਸ਼ਾ ਨਾਲ ਟਕਰਾ ਜਾਂਦੇ ਹਨ। ਹਾਲਾਂਕਿ, ਜੇਕਰ ਅਣੂ ਕਾਫ਼ੀ ਤੇਜ਼ੀ ਨਾਲ ਅੱਗੇ ਵਧ ਰਹੇ ਹਨ ਅਤੇ ਸਹੀ ਸਥਿਤੀ ਵਿੱਚ, ਇੱਕ ਸਫਲ ਟੱਕਰ ਹੋਵੇਗੀ। ਇਸ ਤਰ੍ਹਾਂ, ਟਕਰਾਉਣ ਵੇਲੇ ਗਤੀ ਊਰਜਾ ਨਿਊਨਤਮ ਊਰਜਾ ਤੋਂ ਵੱਧ ਹੋਵੇਗੀ, ਅਤੇ ਉਸ ਟੱਕਰ ਤੋਂ ਬਾਅਦ ਇੱਕ ਪ੍ਰਤੀਕਿਰਿਆ ਹੋਵੇਗੀ। ਇੱਥੋਂ ਤੱਕ ਕਿ ਐਕਸੋਥਰਮਿਕ ਪ੍ਰਤੀਕ੍ਰਿਆਵਾਂ ਨੂੰ ਸ਼ੁਰੂ ਕਰਨ ਲਈ ਘੱਟੋ-ਘੱਟ ਊਰਜਾ ਦੀ ਲੋੜ ਹੁੰਦੀ ਹੈ। ਉਸ ਨਿਊਨਤਮ ਊਰਜਾ ਦੀ ਲੋੜ, ਜਿਵੇਂ ਕਿ ਅਸੀਂ ਪਹਿਲਾਂ ਸਮਝਾਇਆ ਹੈ, ਨੂੰ ਕਿਰਿਆਸ਼ੀਲਤਾ ਊਰਜਾ ਕਿਹਾ ਜਾਂਦਾ ਹੈ।

ਪਦਾਰਥਾਂ ਦੀ ਕਿਰਿਆਸ਼ੀਲਤਾ ਊਰਜਾ ਬਾਰੇ ਡੇਟਾ ਦਾ ਗਿਆਨ ਸਾਡੇ ਵਾਤਾਵਰਣ ਦੀ ਦੇਖਭਾਲ ਕਰਨ ਦੀ ਸੰਭਾਵਨਾ ਨੂੰ ਦਰਸਾਉਂਦਾ ਹੈ। ਦੂਜੇ ਸ਼ਬਦਾਂ ਵਿੱਚ, ਜੇ ਅਸੀਂ ਜਾਣਦੇ ਹਾਂ ਕਿ, ਅਣੂਆਂ ਦੀਆਂ ਵਿਸ਼ੇਸ਼ਤਾਵਾਂ ਦੇ ਅਧਾਰ ਤੇ, ਇੱਕ ਰਸਾਇਣਕ ਪ੍ਰਤੀਕ੍ਰਿਆ ਪੈਦਾ ਕੀਤੀ ਜਾ ਸਕਦੀ ਹੈ, ਤਾਂ ਅਸੀਂ ਉਹ ਕਾਰਵਾਈਆਂ ਨਹੀਂ ਕਰ ਸਕਦੇ ਜੋ, ਉਦਾਹਰਣ ਵਜੋਂ, ਅੱਗ ਦਾ ਕਾਰਨ ਬਣ ਸਕਦੀਆਂ ਹਨ। ਉਦਾਹਰਨ ਲਈ, ਇਹ ਜਾਣਦੇ ਹੋਏ ਕਿ ਇੱਕ ਕਿਤਾਬ ਨੂੰ ਅੱਗ ਲੱਗ ਸਕਦੀ ਹੈ ਜੇਕਰ ਇਸਦੇ ਉੱਪਰ ਇੱਕ ਮੋਮਬੱਤੀ ਰੱਖੀ ਜਾਂਦੀ ਹੈ (ਜਿਸਦੀ ਲਾਟ ਸਰਗਰਮੀ ਊਰਜਾ ਪ੍ਰਦਾਨ ਕਰੇਗੀ), ਅਸੀਂ ਧਿਆਨ ਰੱਖਾਂਗੇ ਕਿ ਮੋਮਬੱਤੀ ਦੀ ਲਾਟ ਕਿਤਾਬ ਦੇ ਕਾਗਜ਼ ਤੱਕ ਨਾ ਫੈਲ ਜਾਵੇ।

ਉਤਪ੍ਰੇਰਕ ਅਤੇ ਸਰਗਰਮੀ ਊਰਜਾ

ਇੱਕ ਉਤਪ੍ਰੇਰਕ ਉਸੇ ਉਦੇਸ਼ ਲਈ ਵਰਤੇ ਗਏ ਹੋਰ ਤਰੀਕਿਆਂ ਨਾਲੋਂ ਥੋੜੇ ਵੱਖਰੇ ਤਰੀਕੇ ਨਾਲ ਪ੍ਰਤੀਕ੍ਰਿਆ ਦੀ ਦਰ ਨੂੰ ਵਧਾਉਂਦਾ ਹੈ। ਇੱਕ ਉਤਪ੍ਰੇਰਕ ਦਾ ਕੰਮ ਸਰਗਰਮੀ ਊਰਜਾ ਨੂੰ ਘੱਟ ਕਰਨਾ ਹੈ , ਤਾਂ ਜੋ ਕਣਾਂ ਦੇ ਇੱਕ ਵੱਡੇ ਅਨੁਪਾਤ ਵਿੱਚ ਪ੍ਰਤੀਕ੍ਰਿਆ ਕਰਨ ਲਈ ਲੋੜੀਂਦੀ ਊਰਜਾ ਹੋਵੇ। ਉਤਪ੍ਰੇਰਕ ਦੋ ਤਰੀਕਿਆਂ ਨਾਲ ਕਿਰਿਆਸ਼ੀਲਤਾ ਊਰਜਾ ਨੂੰ ਘਟਾ ਸਕਦੇ ਹਨ:

  1. ਪ੍ਰਤੀਕ੍ਰਿਆ ਕਰਨ ਵਾਲੇ ਕਣਾਂ ਨੂੰ ਦਿਸ਼ਾ-ਨਿਰਦੇਸ਼ ਦੇ ਕੇ ਤਾਂ ਕਿ ਟਕਰਾਉਣ ਦੀ ਸੰਭਾਵਨਾ ਵੱਧ ਹੋਵੇ, ਜਾਂ ਉਹਨਾਂ ਦੀ ਗਤੀ ਦੀ ਗਤੀ ਨੂੰ ਬਦਲ ਕੇ।
  2. ਇੱਕ ਵਿਚਕਾਰਲੇ ਪਦਾਰਥ ਨੂੰ ਬਣਾਉਣ ਲਈ ਰਿਐਕਟੈਂਟਸ ਨਾਲ ਪ੍ਰਤੀਕਿਰਿਆ ਕਰਨਾ ਜਿਸ ਨੂੰ ਉਤਪਾਦ ਬਣਾਉਣ ਲਈ ਘੱਟ ਊਰਜਾ ਦੀ ਲੋੜ ਹੁੰਦੀ ਹੈ।

ਕੁਝ ਧਾਤਾਂ, ਜਿਵੇਂ ਕਿ ਪਲੈਟੀਨਮ, ਤਾਂਬਾ, ਅਤੇ ਲੋਹਾ, ਕੁਝ ਪ੍ਰਤੀਕ੍ਰਿਆਵਾਂ ਵਿੱਚ ਉਤਪ੍ਰੇਰਕ ਵਜੋਂ ਕੰਮ ਕਰ ਸਕਦੇ ਹਨ। ਸਾਡੇ ਆਪਣੇ ਸਰੀਰ ਵਿੱਚ ਅਜਿਹੇ ਐਨਜ਼ਾਈਮ ਹੁੰਦੇ ਹਨ ਜੋ ਜੈਵਿਕ ਉਤਪ੍ਰੇਰਕ (ਬਾਇਓਕੈਟਾਲਿਸਟ) ਹੁੰਦੇ ਹਨ ਜੋ ਬਾਇਓਕੈਮੀਕਲ ਪ੍ਰਤੀਕ੍ਰਿਆਵਾਂ ਨੂੰ ਤੇਜ਼ ਕਰਨ ਵਿੱਚ ਮਦਦ ਕਰਦੇ ਹਨ। ਉਤਪ੍ਰੇਰਕ ਇੱਕ ਇੰਟਰਮੀਡੀਏਟ ਬਣਾਉਣ ਲਈ ਆਮ ਤੌਰ ‘ਤੇ ਇੱਕ ਜਾਂ ਇੱਕ ਤੋਂ ਵੱਧ ਪ੍ਰਤੀਕ੍ਰਿਆਵਾਂ ਨਾਲ ਪ੍ਰਤੀਕ੍ਰਿਆ ਕਰਦੇ ਹਨ, ਜੋ ਫਿਰ ਅੰਤਮ ਉਤਪਾਦ ਬਣਨ ਲਈ ਪ੍ਰਤੀਕਿਰਿਆ ਕਰਦੇ ਹਨ। ਅਜਿਹੇ ਵਿਚਕਾਰਲੇ ਪਦਾਰਥ ਨੂੰ ਅਕਸਰ “ਐਕਟੀਵੇਟਿਡ ਕੰਪਲੈਕਸ” ਕਿਹਾ ਜਾਂਦਾ ਹੈ ।

ਇੱਕ ਉਤਪ੍ਰੇਰਕ ਨੂੰ ਸ਼ਾਮਲ ਕਰਨ ਵਾਲੀ ਪ੍ਰਤੀਕ੍ਰਿਆ ਦੀ ਉਦਾਹਰਨ

ਹੇਠਾਂ ਇੱਕ ਸਿਧਾਂਤਕ ਉਦਾਹਰਨ ਹੈ ਕਿ ਇੱਕ ਉਤਪ੍ਰੇਰਕ ਨੂੰ ਸ਼ਾਮਲ ਕਰਨ ਵਾਲੀ ਪ੍ਰਤੀਕ੍ਰਿਆ ਕਿਵੇਂ ਅੱਗੇ ਵਧ ਸਕਦੀ ਹੈ। A ਅਤੇ B ਪ੍ਰਤੀਕ੍ਰਿਆਕਾਰ ਹਨ, C ਉਤਪ੍ਰੇਰਕ ਹੈ, ਅਤੇ D A ਅਤੇ B ਵਿਚਕਾਰ ਪ੍ਰਤੀਕ੍ਰਿਆ ਦਾ ਉਤਪਾਦ ਹੈ।

ਪਹਿਲਾ ਕਦਮ (ਪ੍ਰਤੀਕਿਰਿਆ 1): A+C → AC
ਦੂਜਾ ਕਦਮ (ਪ੍ਰਤੀਕਿਰਿਆ 2): B+AC → ACB
ਤੀਜਾ ਕਦਮ (ਪ੍ਰਤੀਕਿਰਿਆ 3): ACB → C+D

ACB ਦਾ ਅਰਥ ਹੈ ਕੈਮੀਕਲ ਇੰਟਰਮੀਡੀਏਟ। ਹਾਲਾਂਕਿ ਉਤਪ੍ਰੇਰਕ (C) ਪ੍ਰਤੀਕ੍ਰਿਆ 1 ਵਿੱਚ ਖਪਤ ਕੀਤੀ ਜਾਂਦੀ ਹੈ, ਇਹ ਬਾਅਦ ਵਿੱਚ ਪ੍ਰਤੀਕ੍ਰਿਆ 3 ਵਿੱਚ ਦੁਬਾਰਾ ਜਾਰੀ ਕੀਤੀ ਜਾਂਦੀ ਹੈ, ਇਸਲਈ ਇੱਕ ਉਤਪ੍ਰੇਰਕ ਨਾਲ ਸਮੁੱਚੀ ਪ੍ਰਤੀਕ੍ਰਿਆ ਇਹ ਹੈ: A+B+C → D+C

ਇਸ ਤੋਂ ਇਹ ਨਿਕਲਦਾ ਹੈ ਕਿ ਉਤਪ੍ਰੇਰਕ ਪ੍ਰਤੀਕ੍ਰਿਆ ਦੇ ਅੰਤ ‘ਤੇ ਜਾਰੀ ਕੀਤਾ ਜਾਂਦਾ ਹੈ, ਪੂਰੀ ਤਰ੍ਹਾਂ ਬਦਲਿਆ ਨਹੀਂ। ਉਤਪ੍ਰੇਰਕ ਨੂੰ ਧਿਆਨ ਵਿੱਚ ਰੱਖੇ ਬਿਨਾਂ, ਸਮੁੱਚੀ ਪ੍ਰਤੀਕ੍ਰਿਆ ਲਿਖੀ ਜਾਵੇਗੀ: A+B → D

ਇਸ ਉਦਾਹਰਨ ਵਿੱਚ, ਉਤਪ੍ਰੇਰਕ ਨੇ ਪ੍ਰਤੀਕ੍ਰਿਆ ਕਦਮਾਂ ਦਾ ਇੱਕ ਸੈੱਟ ਪ੍ਰਦਾਨ ਕੀਤਾ ਹੈ ਜਿਸਨੂੰ ਅਸੀਂ “ਵਿਕਲਪਕ ਪ੍ਰਤੀਕ੍ਰਿਆ ਮਾਰਗ” ਕਹਿ ਸਕਦੇ ਹਾਂ। ਇਹ ਮਾਰਗ ਜਿਸ ਵਿੱਚ ਉਤਪ੍ਰੇਰਕ ਦਖਲਅੰਦਾਜ਼ੀ ਕਰਦਾ ਹੈ ਨੂੰ ਘੱਟ ਸਰਗਰਮੀ ਊਰਜਾ ਦੀ ਲੋੜ ਹੁੰਦੀ ਹੈ ਅਤੇ ਇਸਲਈ ਤੇਜ਼ ਅਤੇ ਵਧੇਰੇ ਕੁਸ਼ਲ ਹੈ।

ਅਰਹੇਨੀਅਸ ਸਮੀਕਰਨ ਅਤੇ ਆਇਰਿੰਗ ਸਮੀਕਰਨ

ਤਾਪਮਾਨ ਦੇ ਨਾਲ ਪ੍ਰਤੀਕ੍ਰਿਆਵਾਂ ਦੀ ਦਰ ਕਿਵੇਂ ਵਧਦੀ ਹੈ ਇਹ ਵਰਣਨ ਕਰਨ ਲਈ ਦੋ ਸਮੀਕਰਨਾਂ ਦੀ ਵਰਤੋਂ ਕੀਤੀ ਜਾ ਸਕਦੀ ਹੈ। ਪਹਿਲਾਂ, ਅਰੇਨੀਅਸ ਸਮੀਕਰਨ ਤਾਪਮਾਨ ‘ਤੇ ਪ੍ਰਤੀਕ੍ਰਿਆ ਦਰਾਂ ਦੀ ਨਿਰਭਰਤਾ ਦਾ ਵਰਣਨ ਕਰਦਾ ਹੈ। ਦੂਜੇ ਪਾਸੇ, ਆਇਰਿੰਗ ਸਮੀਕਰਨ ਹੈ, ਜੋ ਕਿ 1935 ਵਿੱਚ ਖੋਜਕਰਤਾ ਦੁਆਰਾ ਪ੍ਰਸਤਾਵਿਤ ਕੀਤਾ ਗਿਆ ਸੀ; ਉਸਦੀ ਸਮੀਕਰਨ ਪਰਿਵਰਤਨ ਅਵਸਥਾ ਦੇ ਸਿਧਾਂਤ ‘ਤੇ ਅਧਾਰਤ ਹੈ ਅਤੇ ਪ੍ਰਤੀਕ੍ਰਿਆ ਦਰ ਅਤੇ ਤਾਪਮਾਨ ਵਿਚਕਾਰ ਸਬੰਧਾਂ ਦਾ ਵਰਣਨ ਕਰਨ ਲਈ ਵਰਤੀ ਜਾਂਦੀ ਹੈ। ਸਮੀਕਰਨ ਹੈ:

k= ( kB T /h) exp(-ΔG ‡ /RT)।

ਹਾਲਾਂਕਿ, ਜਦੋਂ ਕਿ ਅਰੇਨੀਅਸ ਸਮੀਕਰਨ ਤਾਪਮਾਨ ਅਤੇ ਪ੍ਰਤੀਕ੍ਰਿਆ ਦਰ ਦੇ ਵਿਚਕਾਰ ਨਿਰਭਰਤਾ ਨੂੰ ਵਰਤਾਰੇ ਦੇ ਤੌਰ ‘ਤੇ ਸਮਝਾਉਂਦਾ ਹੈ, ਆਈਰਿੰਗ ਸਮੀਕਰਨ ਪ੍ਰਤੀਕ੍ਰਿਆ ਦੇ ਵਿਅਕਤੀਗਤ ਮੁੱਢਲੇ ਕਦਮਾਂ ਬਾਰੇ ਸੂਚਿਤ ਕਰਦਾ ਹੈ।

ਦੂਜੇ ਪਾਸੇ, ਅਰੇਨੀਅਸ ਸਮੀਕਰਨ ਗੈਸ ਪੜਾਅ ਵਿੱਚ ਗਤੀ ਊਰਜਾ ਉੱਤੇ ਹੀ ਲਾਗੂ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ, ਜਦੋਂ ਕਿ ਆਇਰਿੰਗ ਸਮੀਕਰਨ ਗੈਸ ਪੜਾਅ ਵਿੱਚ ਅਤੇ ਸੰਘਣਾ ਅਤੇ ਮਿਸ਼ਰਤ ਪੜਾਵਾਂ (ਪੜਾਆਂ ਜਿਨ੍ਹਾਂ ਦਾ ਕੋਈ ਸੰਬੰਧ ਨਹੀਂ ਹੁੰਦਾ) ਵਿੱਚ ਪ੍ਰਤੀਕ੍ਰਿਆਵਾਂ ਦੇ ਅਧਿਐਨ ਵਿੱਚ ਉਪਯੋਗੀ ਹੈ। ਗੈਸ ਪੜਾਅ ਵਿੱਚ) ਟੱਕਰ ਮਾਡਲ)। ਇਸੇ ਤਰ੍ਹਾਂ, ਐਰੇਨੀਅਸ ਸਮੀਕਰਨ ਅਨੁਭਵੀ ਨਿਰੀਖਣ ‘ਤੇ ਅਧਾਰਤ ਹੈ ਕਿ ਪ੍ਰਤੀਕ੍ਰਿਆਵਾਂ ਦੀ ਦਰ ਤਾਪਮਾਨ ਦੇ ਨਾਲ ਵਧਦੀ ਹੈ। ਇਸਦੀ ਬਜਾਏ ਆਈਰਿੰਗ ਸਮੀਕਰਨ ਪਰਿਵਰਤਨ ਸਥਿਤੀ ਮਾਡਲ ‘ਤੇ ਅਧਾਰਤ ਇੱਕ ਸਿਧਾਂਤਕ ਨਿਰਮਾਣ ਹੈ।

ਪਰਿਵਰਤਨ ਅਵਸਥਾ ਦੇ ਸਿਧਾਂਤ ਦੇ ਸਿਧਾਂਤ:

  • ਊਰਜਾ ਰੁਕਾਵਟ ਦੇ ਸਿਖਰ ‘ਤੇ ਪਰਿਵਰਤਨ ਅਵਸਥਾ ਅਤੇ ਰੀਐਕਟੈਂਟਸ ਦੀ ਸਥਿਤੀ ਦੇ ਵਿਚਕਾਰ ਇੱਕ ਥਰਮੋਡਾਇਨਾਮਿਕ ਸੰਤੁਲਨ ਹੁੰਦਾ ਹੈ।
  • ਰਸਾਇਣਕ ਪ੍ਰਤੀਕ੍ਰਿਆ ਦੀ ਦਰ ਉੱਚ ਊਰਜਾ ਪਰਿਵਰਤਨ ਅਵਸਥਾ ਵਿੱਚ ਕਣਾਂ ਦੀ ਇਕਾਗਰਤਾ ਦੇ ਅਨੁਪਾਤੀ ਹੈ।

ਸਰਗਰਮੀ ਊਰਜਾ ਅਤੇ ਗਿਬਸ ਊਰਜਾ ਵਿਚਕਾਰ ਸਬੰਧ

ਹਾਲਾਂਕਿ ਆਈਰਿੰਗ ਸਮੀਕਰਨ ਵਿੱਚ ਪ੍ਰਤੀਕ੍ਰਿਆ ਦੀ ਦਰ ਦਾ ਵਰਣਨ ਵੀ ਕੀਤਾ ਗਿਆ ਹੈ, ਇਸ ਸਮੀਕਰਨ ਨਾਲ ਐਕਟੀਵੇਸ਼ਨ ਊਰਜਾ ਦੀ ਵਰਤੋਂ ਕਰਨ ਦੀ ਬਜਾਏ, ਪਰਿਵਰਤਨ ਅਵਸਥਾ ਦੀ ਗਿਬਜ਼ ਊਰਜਾ (ΔG ‡ ) ਸ਼ਾਮਲ ਕੀਤੀ ਜਾਂਦੀ ਹੈ।

ਕਿਉਂਕਿ ਟਕਰਾਉਣ ਵਾਲੇ ਅਣੂਆਂ ਦੀ ਗਤੀ ਊਰਜਾ (ਭਾਵ ਲੋੜੀਂਦੀ ਊਰਜਾ ਅਤੇ ਸਹੀ ਦਿਸ਼ਾ ਵਾਲੇ) ਸੰਭਾਵੀ ਊਰਜਾ ਵਿੱਚ ਬਦਲ ਜਾਂਦੀ ਹੈ, ਕਿਰਿਆਸ਼ੀਲ ਕੰਪਲੈਕਸ ਦੀ ਊਰਜਾਵਾਨ ਅਵਸਥਾ ਇੱਕ ਸਕਾਰਾਤਮਕ ਮੋਲਰ ਗਿਬਸ ਊਰਜਾ ਦੁਆਰਾ ਦਰਸਾਈ ਜਾਂਦੀ ਹੈ। ਗਿਬਸ ਊਰਜਾ, ਜਿਸਨੂੰ ਮੂਲ ਰੂਪ ਵਿੱਚ “ਉਪਲਬਧ ਊਰਜਾ” ਕਿਹਾ ਜਾਂਦਾ ਹੈ, ਦੀ ਖੋਜ 1870 ਵਿੱਚ ਜੋਸ਼ੀਆ ਵਿਲਾਰਡ ਗਿਬਸ ਦੁਆਰਾ ਕੀਤੀ ਗਈ ਸੀ। ਇਸ ਊਰਜਾ ਨੂੰ ਕਿਰਿਆਸ਼ੀਲਤਾ ਦੀ ਮਿਆਰੀ ਮੁਕਤ ਊਰਜਾ ਵੀ ਕਿਹਾ ਜਾਂਦਾ ਹੈ ।

ਕਿਸੇ ਵੀ ਸਮੇਂ ਸਿਸਟਮ ਦੀ ਗਿਬਜ਼ ਮੁਕਤ ਊਰਜਾ ਨੂੰ ਸਿਸਟਮ ਦੀ ਐਂਥਲਪੀ ਦੇ ਤੌਰ ਤੇ ਪਰਿਭਾਸ਼ਿਤ ਕੀਤਾ ਜਾਂਦਾ ਹੈ: ਸਿਸਟਮ ਦੀ ਐਂਟ੍ਰੋਪੀ ਦੇ ਤਾਪਮਾਨ ਦੇ ਗੁਣਾ ਨੂੰ ਘਟਾ ਕੇ:

G=H-TS।

H ਐਂਥਲਪੀ ਹੈ, T ਤਾਪਮਾਨ ਹੈ, ਅਤੇ S ਐਨਟ੍ਰੋਪੀ ਹੈ। ਇਹ ਸਮੀਕਰਨ ਜੋ ਕਿਸੇ ਸਿਸਟਮ ਦੀ ਮੁਕਤ ਊਰਜਾ ਨੂੰ ਪਰਿਭਾਸ਼ਿਤ ਕਰਦਾ ਹੈ, ਕਿਸੇ ਖਾਸ ਪ੍ਰਤੀਕ੍ਰਿਆ ਦੇ ਡ੍ਰਾਈਵਿੰਗ ਬਲਾਂ ਵਜੋਂ ਐਂਥਲਪੀ ਅਤੇ ਐਂਟਰੌਪੀ ਦੇ ਸਾਪੇਖਿਕ ਮਹੱਤਵ ਨੂੰ ਨਿਰਧਾਰਤ ਕਰਨ ਦੇ ਸਮਰੱਥ ਹੈ। ਹੁਣ, ਕਿਸੇ ਪ੍ਰਤੀਕ੍ਰਿਆ ਦੀ ਮੁਕਤ ਊਰਜਾ ਵਿੱਚ ਐਂਥਲਪੀ ਅਤੇ ਐਂਟਰੌਪੀ ਸ਼ਬਦਾਂ ਦੇ ਯੋਗਦਾਨਾਂ ਵਿਚਕਾਰ ਸੰਤੁਲਨ ਉਸ ਤਾਪਮਾਨ ‘ਤੇ ਨਿਰਭਰ ਕਰਦਾ ਹੈ ਜਿਸ ‘ਤੇ ਪ੍ਰਤੀਕ੍ਰਿਆ ਹੁੰਦੀ ਹੈ। ਮੁਫਤ ਊਰਜਾ ਨੂੰ ਪਰਿਭਾਸ਼ਿਤ ਕਰਨ ਲਈ ਵਰਤੀ ਜਾਂਦੀ ਸਮੀਕਰਨ ਸੁਝਾਅ ਦਿੰਦੀ ਹੈ ਕਿ ਤਾਪਮਾਨ ਵਧਣ ਨਾਲ ਐਂਟਰੋਪੀ ਸ਼ਬਦ ਵਧੇਰੇ ਮਹੱਤਵਪੂਰਨ ਹੋ ਜਾਵੇਗਾ : ΔG° = ΔH° – TΔS°।

ਸਰੋਤ

  • ਬ੍ਰੇਨਾਰਡ, ਜੇ. (2014)। ਸਰਗਰਮੀ ਊਰਜਾ. https://www.ck12.org/ ‘ਤੇ
  • ਅਰਹੇਨੀਅਨ ਕਾਨੂੰਨ. (2020)। ਸਰਗਰਮੀ ਊਰਜਾ.
  • ਮਿਸ਼ੇਲ, ਐਨ. (2018)। ਐਸੀਟੋਨਿਟ੍ਰਾਈਲ ਕੋਸੋਲਵੈਂਟ ਪ੍ਰਣਾਲੀਆਂ ਵਿੱਚ ਐਸੀਟਿਕ ਐਨਹਾਈਡ੍ਰਾਈਡ ਹਾਈਡਰੋਲਾਈਸਿਸ ਦਾ ਆਇਰਿੰਗ ਐਕਟੀਵੇਸ਼ਨ ਐਨਰਜੀ ਵਿਸ਼ਲੇਸ਼ਣ।