HomeskAktivačná energia (Ea)

Aktivačná energia (Ea)

V chémii sa minimálne množstvo energie potrebné na aktiváciu atómov alebo molekúl do stavu, v ktorom môže dôjsť k chemickej transformácii alebo fyzikálnemu transportu , nazýva aktivačná energia Ea . V teórii prechodného stavu je aktivačná energia rozdiel v obsahu energie medzi atómami alebo molekulami v konfigurácii aktívneho alebo prechodného stavu a atómami alebo molekulami v počiatočnej konfigurácii. Takmer vždy sa stav reakcie vyskytuje na vyššej energetickej úrovni ako reagujúce produkty (reaktanty). Preto má aktivačná energia vždy kladnú hodnotu. Táto kladná hodnota sa vyskytuje bez ohľadu na to, či reakcia absorbuje energiu ( endergonická respendotermický ) alebo ho vytvára ( exergonický alebo exotermický ).

Aktivačná energia je skratka pre Ea. Najbežnejšími jednotkami jednotiek Ea sú kilojouly na mol (kJ/mol) a kilokalórie na mol (kcal/mol).

Arrhenius Ea rovnica

Svante Arrhenius bol švédsky vedec, ktorý v roku 1889 preukázal existenciu aktivačnej energie a vyvinul rovnicu, ktorá nesie jeho meno. Arrheniova rovnica popisuje koreláciu medzi teplotou a rýchlosťou reakcie. Tento vzťah je nevyhnutný na výpočet rýchlosti chemických reakcií a predovšetkým množstva energie potrebnej na to, aby tieto reakcie prebehli.

V Arrheniovej rovnici je K koeficient reakčnej rýchlosti (reakčná rýchlosť), A je faktor, ako často sa molekuly zrážajú a e je konštanta (približne 2,718). Na druhej strane Ea je aktivačná energia a R je univerzálna plynová konštanta (jednotky energie na zvýšenie teploty na mól). Nakoniec T predstavuje absolútnu teplotu meranú v stupňoch Kelvina.

Arrheniova rovnica je teda reprezentovaná ako k= Ae^(-Ea/RT). Avšak, ako mnoho rovníc, môže byť preusporiadané na výpočet rôznych hodnôt. Na výpočet aktivačnej energie (Ea) však nie je potrebné poznať hodnotu A, pretože ju možno určiť z variácií koeficientov rýchlosti reakcie ako funkcie teploty.

Chemický význam Ea

Všetky molekuly majú malé množstvo energie, ktorá môže byť vo forme kinetickej energie alebo potenciálnej energie. Keď sa molekuly zrazia, ich kinetická energia môže narušiť a dokonca zničiť väzby, čo sa deje, keď prebiehajú chemické reakcie.

Ak sa molekuly pohybujú pomaly, teda s malou kinetickou energiou, buď sa nezrazia s inými molekulami, alebo nárazy nevyvolajú žiadnu reakciu, pretože sú slabé. To isté sa stane, ak sa molekuly zrazia s nesprávnou alebo nesprávnou orientáciou. Ak sa však molekuly pohybujú dostatočne rýchlo a v správnej orientácii, dôjde k úspešnej zrážke. Kinetická energia pri zrážke bude teda väčšia ako minimálna energia a po tejto zrážke prebehne reakcia. Dokonca aj exotermické reakcie vyžadujú na spustenie minimálne množstvo energie. Táto minimálna energetická potreba, ako sme už vysvetlili, sa nazýva aktivačná energia.

Zo znalosti údajov o aktivačnej energii látok vyplýva možnosť starostlivosti o naše životné prostredie. Inými slovami, ak si uvedomíme, že v závislosti od charakteristík molekúl môže dôjsť k chemickej reakcii, nemohli by sme vykonávať činnosti, ktoré by napríklad mohli spôsobiť požiar. Napríklad, keď vieme, že kniha sa môže vznietiť, ak sa na ňu položí sviečka (ktorej plameň by poskytol aktivačnú energiu), dáme pozor, aby sa plameň sviečky nerozšíril na papier knihy.

Katalyzátory a aktivačná energia

Katalyzátor zvyšuje rýchlosť reakcie mierne odlišným spôsobom ako iné metódy používané na rovnaký účel. Funkciou katalyzátora je znížiť aktivačnú energiu , takže väčší podiel častíc má dostatok energie na reakciu. Katalyzátory môžu znížiť aktivačnú energiu dvoma spôsobmi:

  1. Orientáciou reagujúcich častíc tak, aby dochádzalo k zrážkam s väčšou pravdepodobnosťou, alebo zmenou rýchlosti ich pohybu.
  2. Reakcia s reaktantmi za vzniku medziproduktu, ktorý vyžaduje menej energie na vytvorenie produktu.

Niektoré kovy, ako napríklad platina, meď a železo, môžu pri určitých reakciách pôsobiť ako katalyzátory. V našom vlastnom tele sú enzýmy, ktoré sú biologickými katalyzátormi (biokatalyzátory), ktoré pomáhajú urýchliť biochemické reakcie. Katalyzátory vo všeobecnosti reagujú s jedným alebo viacerými reaktantmi za vzniku medziproduktu, ktorý potom reaguje a stáva sa konečným produktom. Takáto medziproduktová látka sa často označuje ako “aktivovaný komplex ” .

Príklad reakcie zahŕňajúcej katalyzátor

Nasleduje teoretický príklad toho, ako môže prebiehať reakcia zahŕňajúca katalyzátor. A a B sú reaktanty, C je katalyzátor a D je produkt reakcie medzi A a B.

Prvý krok (reakcia 1): A+C → AC
Druhý krok (reakcia 2): B+AC → ACB
Tretí krok (reakcia 3): ACB → C+D

ACB znamená chemický medziprodukt. Hoci sa katalyzátor (C) spotrebuje v reakcii 1, neskôr sa opäť uvoľní v reakcii 3, takže celková reakcia s katalyzátorom je: A+B+C → D+C

Z toho vyplýva, že katalyzátor sa na konci reakcie uvoľní úplne nezmenený. Bez zohľadnenia katalyzátora by bola celková reakcia napísaná: A+B → D

V tomto príklade katalyzátor poskytol súbor reakčných krokov, ktoré môžeme nazvať “alternatívna reakčná dráha”. Táto dráha, do ktorej katalyzátor zasahuje, vyžaduje menej aktivačnej energie, a preto je rýchlejšia a efektívnejšia.

Arrheniova rovnica a Eyringova rovnica

Na opis toho, ako sa rýchlosť reakcií zvyšuje s teplotou, možno použiť dve rovnice. Po prvé, Arrheniova rovnica popisuje závislosť rýchlosti reakcie od teploty. Na druhej strane je tu Eyringova rovnica, ktorú navrhol spomínaný výskumník v roku 1935; jeho rovnica je založená na teórii prechodových stavov a používa sa na opis vzťahu medzi rýchlosťou reakcie a teplotou. Rovnica je:

k= ( kB T /h) exp(-AG ‡ /RT).

Kým však Arrheniova rovnica vysvetľuje závislosť medzi teplotou a rýchlosťou reakcie fenomenologicky, Eyringova rovnica informuje o jednotlivých elementárnych krokoch reakcie.

Na druhej strane, Arrheniovu rovnicu možno použiť iba na kinetickú energiu v plynnej fáze, zatiaľ čo Eyringova rovnica je užitočná pri štúdiu reakcií v plynnej fáze, ako aj v kondenzovanej a zmiešanej fáze (fázy, ktoré nemajú žiadny význam). v plynnej fáze).model zrážky). Podobne je Arrheniova rovnica založená na empirickom pozorovaní, že rýchlosť reakcií sa zvyšuje s teplotou. Namiesto toho je Eyringova rovnica teoretickou konštrukciou založenou na modeli prechodového stavu.

Princípy teórie prechodových stavov:

  • Medzi prechodovým stavom a stavom reaktantov na vrchole energetickej bariéry existuje termodynamická rovnováha.
  • Rýchlosť chemickej reakcie je úmerná koncentrácii častíc vo vysokoenergetickom prechodnom stave.

Vzťah medzi aktivačnou energiou a Gibbsovou energiou

Hoci rýchlosť reakcie je tiež opísaná v Eyringovej rovnici, s touto rovnicou namiesto použitia aktivačnej energie je zahrnutá aj Gibbsova energia (AG ‡ ) prechodového stavu.

Keďže kinetická energia zrážaných molekúl (tj tých, ktoré majú dostatočnú energiu a správnu orientáciu) sa transformuje na potenciálnu energiu, energetický stav aktivovaného komplexu je charakterizovaný kladnou molárnou Gibbsovou energiou. Gibbsovu energiu, pôvodne nazývanú „dostupná energia“, objavil v roku 1870 Josiah Willard Gibbs. Táto energia sa tiež nazýva štandardná voľná energia aktivácie .

Gibbsova voľná energia systému v každom okamihu je definovaná ako entalpia systému mínus súčin teploty krát entropia systému:

G = H-TS.

H je entalpia, T je teplota a S je entropia. Táto rovnica, ktorá definuje voľnú energiu systému, je schopná určiť relatívnu dôležitosť entalpie a entropie ako hnacích síl špecifickej reakcie. Rovnováha medzi príspevkami členov entalpie a entropie k voľnej energii reakcie závisí od teploty, pri ktorej reakcia prebieha. Rovnica použitá na definovanie voľnej energie naznačuje, že pojem entropie sa stane dôležitejším so zvyšujúcou sa teplotou : ΔG° = ΔH° – TAS°.

Zdroje

  • Brainard, J. (2014). Aktivačná energia. Na https://www.ck12.org/
  • Arénsky zákon. (2020). Aktivačné energie.
  • Mitchell, N. (2018). Eyringova analýza aktivačnej energie hydrolýzy anhydridu kyseliny octovej v acetonitrilových kosolventných systémoch.